
y

An efficient method for computing exact state
space of Petri nets with stopwatches

Morgan Magnin 1

IRCCyN, Nantes, France

Didier Lime 2

Aalborg University - CISS, Denmark

Olivier (H.) Roux 3

IRCCyN, Nantes, France

Abstract

In this paper, we address the issue of the formal verification of real-time systems in
the context of a preemptive scheduling policy. We propose an algorithm which com-
putes the state-space of the system, modeled as a time Petri net with stopwatches,
exactly and efficiently, by the use of Difference Bounds Matrices (DBM) whenever
possible and automatically switching to more time and memory consuming general
(convex) polyhedra only when required. We propose a necessary and sufficient con-
dition for the need of general polyhedra. We give experimental results comparing
our implementation of the method to a full DBM over-approximation and to an
exact computation with only general polyhedra.

Key words: real-time systems, time Petri nets, polyhedra

1 Introduction

As systems demanding correctness proofs increase in complexity, we may need
to consider formal models involving actions that can be suspended with a
memory of their current status. An obvious application is the modeling of
preemption in the context of multi-tasking. This notion of suspension requires
the introduction of variables whose continuous evolution may be stopped for

1 Email: Morgan.Magnin@irccyn.ec-nantes.fr
2 Email: didier@cs.aau.dk
3 Email: Olivier-h.Roux@irccyn.ec-nantes.fr

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Magnin, Lime, Roux

a while and later resumed at the same point. This leads to the extension
of traditional clock variables by “stopwatches”, of timed automata by stop-
watch automata [6] and of time Petri nets by several related models including
Preemptive time Petri nets (Preemptive-TPNs [5]) and Scheduling time Petri
nets (Scheduling-TPNs [15]).

Verification of properties on a formal model involves the investigation of
part or the whole set of its reachable states: Its state-space. This state-space
is generally infinite due to the dense-time semantics considered. As a con-
sequence, verification algorithms compute finite abstractions of it, preserving
the properties to be verified. In these abstractions, concrete states are encoded
into symbolic sets of states described by a discrete part (location or marking)
and a continuous part (value of clocks/stopwatches). The continuous part is
represented by a convex polyhedron, that is to say, a set of linear inequations.

In the case of models with simple clocks (timed automata, time Petri nets),
the considered polyhedra have a degenerated form, which can be encoded
into an efficient data structure called Difference Bound Matrix (DBM [4,8]).
Handling DBMs is much more efficient than handling general polyhedra.

When dealing with stopwatches, polyhedra retain their general form which
cannot be encoded into DBMs [12,14]: The gain of expressivity of stopwatches
is balanced by undecidability results [11,3], an increased complexity of the
verification algorithms, and a much higher memory consumption.

A natural counter-measure against the high complexity and undecidability
results linked to the handling of general polyhedra consists of over-approximating
the computed state-space by approximating the polyhedra by simpler en-
globing polyhedra, such as the tightest englobing DBM which yields a good
speed-up of the computation [12,5,3]. The properties preserved by an over-
approximation are however limited to safety: The system is checked for the
non-satisfaction of a given “bad” property. The intuitive reason for this is that
the actual behavior of the system is included in the over-approximated one.
Also, with a DBM over-approximation, the number of DBMs to be considered
in the computation is finite, which is not necessarily true for general poly-
hedra. This may thus make the over-approximated computation terminate,
while the exact one does not.

In order to perform an exact analysis in an efficient way, recent works use
an over-approximation as a pre-computing and then refine the results to ex-
actness by restricting them with the timing constraints of the net: In [5], the
authors over-approximate the computation of the state class graph of a Pre-
emptive-TPN by using DBMs. Then, given an untimed transition sequence
from the over-approximated state class graph, they can obtain the feasible
timings between the firing of the transitions of the sequence as the solution
of a linear programming problem. In particular, if there is no solution, the
transition sequence has been introduced by the over-approximation and can
be cleaned up, otherwise the solution set allows to check timed properties on
the firing times of transitions. In [13], the authors translate Scheduling-TPNs

2



Magnin, Lime, Roux

into stopwatch automata and use HyTech [10] for the subsequent verifica-
tion. The translation uses a DBM over-approximation to obtain the discrete
structure of the automaton. They then compute guards and invariants syn-
tactically from the timing constraints of the net. Thus, the discrete locations
that were possibly added by the over-approximation are made unreachable
and the obtained stopwatch automaton is proved to be time-bisimilar to the
initial Scheduling-TPN. This intuitively means that its behavior is the same
as that of the Scheduling-TPN (and not an over-approximation).

However, the over-approximation used in these two methods may cause
them to not terminate by adding an infinity of false behaviors to the model,
while an exact computation would terminate. Put in another way, the over-
approximation computes an infinity of unreachable markings while the net is
indeed bounded.

The method developed in this paper also tackles the issue of exact and
efficient state-space computation of stopwatch extensions of TPNs. It is in
particular applicable to Preemptive-TPNs and Scheduling-TPNs. However,
for the sake of simplicity, it is explained on the Scheduling-TPN model.

Our approach is based on the following two remarks: (i) the initial symbolic
state of a Scheduling-TPN can always be represented by a DBM, (ii) it is
“easy” to determine if a given polyhedron is a DBM

By extending the necessary condition given in [5], for detecting the need
of general polyhedra, to a necessary and sufficient condition, we are able to
propose a mixed exact computation of the state-space, which uses both the
efficient DBM representation and, only when required, the general polyhedra
representation. We have implemented the method for Scheduling-TPNs and
we illustrate its efficiency through experimental results.

The paper is organized as follows: Section 2 gives the formal definition of
the Scheduling-TPN model and illustrates the state class graph computation.
Section 3 introduces theorems and proofs about polyhedral computation. Sec-
tion 4 describes an algorithm that improves the efficiency of exact state space
computation. Finally, in section 5, we give a brief description of the tool
implementing the algorithm and some experimental results.

2 Scheduling Time Petri nets

2.1 Definition and semantics of Scheduling-TPNs

In [15], Roux et al. introduce an extension of TPNs to scheduling. This
extension consists of enriching the Time Petri net model with the scheduling
policies (i.e. the way the different schedulers of the system activate or suspend
the tasks).

Given two sets A and B, we denote by BA the set of functions from A to
B.

Definition 2.1 A Scheduling-Time Petri Net (Scheduling-TPN) is a tuple

3



Magnin, Lime, Roux

T = (P, T, •(), ()•, α, β, M0, Act) where P = {p1, p2, . . . , pm} is a non-empty
finite set of places; T = {t1, t2, . . . , tn} is a non-empty finite set of transitions
(T ∩ P = ∅); •() ∈ (NP )T is the backward incidence function; ()• ∈ (NP )T is
the forward incidence function; M0 ∈ NP is the initial marking of the net;
α ∈ (Q+)T and β ∈ (Q+ ∪ {∞})T are functions giving for each transition
respectively its earliest and latest firing times (α ≤ β); Act ∈ (NP )N

P
is the

active marking function. Act(M) represents the interpretation of the marking
M over the scheduling strategy.

Act is the specific element that extends TPNs to Scheduling-TPNs.

A marking M of the net is an element of NP such that ∀p ∈ P, M(p) is the
number of tokens in the place p. An active marking Act(M) of the net is an
element of NP such that ∀p ∈ P , either Act(M)(p) = M(p) or Act(M)(p) = 0.

In [15], for a fixed priority scheduling policy, Act is determined from two
new parameters associated to places: let Proc = {proc1, proc2, . . . procl} be a
finite set of processors, then γ ∈ (Proc ∪ {φ})P assigns a processor to each
place and ω ∈ NP gives the priority of each place on its processor. Then, for
each place p, Act(M)(p) = M(p) if γ(p) = φ 4 or (1) p is involved in enabling
at least one transition and (2) its priority is the greatest among all transitions
satisfying (1) and attached to the same processor.

A transition t is said to be active if it is enabled by the active marking
Act(M) i.e. t ∈ enabled(Act(M)). Transitions that are enabled but not active
are said to be suspended.

Let M be a marking of the net and ti a firable transition. We will denote
by ↑ enabled(M, ti) the set of transitions newly enabled by the firing of ti,
i.e. transitions enabled by the new marking M − •ti + ti

• but not by M − •ti.
Similarly, we will denote by disabled(M, ti) the set of transitions disabled by
the firing of ti, i.e. transitions enabled by M but not by M − •ti.

A valuation is a mapping ν ∈ (R+)T such that ∀t ∈ T, ν(t) is the time
elapsed since t was last enabled. Note that ν(t) is meaningful only if t is an
enabled transition. 0 is the null valuation such that ∀k, 0k = 0.

Definition 2.2 The semantics of a Scheduling-TPN T is defined as a TTS
ST = (Q, q0,→) such that

• Q = NP × (R+)T represents the set of all states of the system

• q0 = (M0, 0) is the initial state

• →∈ Q × (T ∪ R) × Q is the transition relation including a continuous
transition relation and a discrete transition relation.

4 γ(p) = φ is used for places that do not represent an activity of a processor (for example
it may represent a memory state or a register).

4



Magnin, Lime, Roux

· The continuous transitions are defined ∀d ∈ R+ by: (M, ν)
d−→ (M, ν ′)

iff




∀ti ∈ enabled(M), ν ′(ti) =

������
ν(ti) if Act(M) < •ti ∧M ≥ •(ti)

ν(ti) + d otherwise,

∀tk ∈ T, M ≥ •tk ⇒ ν ′(tk) ≤ β(tk)

· The discrete transitions are defined ∀ti ∈ T by: (M, ν)
ti−→ (M ′, ν ′)

iff




Act(M) ≥ •ti,

M ′ = M − •ti + ti
•,

α(ti) ≤ ν(ti) ≤ β(ti),

∀tk, ν ′(tk) =

������
0 if tk ∈↑ enabled(M, ti),

ν(tk) otherwise

2.2 State space abstraction for Scheduling-TPN

2.2.1 State class graph for Scheduling-TPN.

In order to analyze a time Petri net, the computation of its reachable state
space is required. However, the reachable state space of a time Petri net is
obviously infinite. So a method has been proposed by Berthomieu and Diaz

[2] to partition it in a finite set of infinite state classes. In [12], Lime and
Roux extended this method and gave a semi-algorithm for computing the
state space of a Scheduling-TPN (as proven in [15], reachability and bound-
edness problems for Scheduling-TPNs are undecidable).

State classes are still defined as a pair with a marking and a firing domain.
However, with the presence of stopwatches (here the valuation of the clocks),
the firing domain of state classes cannot be encoded into a DBM anymore; a
general polyhedron form is required.

Theorem 2.3 A state class C of a Scheduling-TPN is a pair (M, D) where M
is a marking of the net and D a set of inequations. For Scheduling-TPNs, the
general form of a domain D is that of a (convex) polyhedron with constraints
involving up to n variables, with n being the number of transitions enabled by
the marking of the class:

Aθ ≤ B

with A and B being rational matrices of respective dimensions (m, n) and
(m, 1) (m ∈ N).

In the case of TPNs, the firing domain is simpler than a general polyhedron
and therefore can be encoded into the efficient DBM datastructure [4,8].

5



Magnin, Lime, Roux

Definition 2.4 [Firability] Let C = (M, D) be a state class of a Scheduling-
TPN. A transition ti is said to be firable from C iff there exists a solution
(θ∗0, . . . , θ

∗
n−1) of D, such that ∀j ∈ [0..n− 1]− {i}, s.t. tj is active , θ∗i ≤ θ∗j .

Now, given a class C = (M, D) and a firable transition tf , the class C ′ =
(M ′, D′) obtained from C by the firing of tf is given by

• M ′ = M − •tf + tf
•

• D′ is computed along the following steps, and noted next(D, tf )
(i) variable substitutions for all enabled transitions that are active tj : θj =

θf + θ′j ,
(ii) intersection with the set of positive or null reals R+: ∀i, θ′i ≥ 0,
(iii) elimination (using for instance the Fourier-Motzkin method [7]) of all vari-

ables relative to transitions disabled by the firing of tf ,
(iv) addition of inequations relative to newly enabled transitions

∀tk ∈↑ enabled(M, tf ), α(tk) ≤ θ′k ≤ β(tk).

The fact that the firing domain cannot always be expressed with a DBM
practically means that, for example, a class may have the following domain:

{0 ≤ θ1 ≤ 3, 0 ≤ θ2 ≤ 4, 0 ≤ θ3 ≤ 4, 1 ≤ θ2 + θ3 ≤ 7} (1)

What we can see here is that the two last inequations cannot be expressed
with a DBM. Furthermore, we can easily see that those new inequations may
give even more complex inequations (i.e. involving more variables) when firing
another transition for the domain.

2.2.2 DBM over-approximation

Handling general polyhedra is much more time and memory consuming than
for DBMs [1]. In order to be able to keep these algorithms efficient for Schedul-
ing-TPNs, Lime et al. proposed an over-approximation of the state class
graph of such a model by using DBM [12]. This method consists in wrapping
a polyhedron in a DBM that contains it. This can be illustrated on the previ-
ous example: The DBM over-approximation consists in writing that the firing
domain can be approximated by the following:

{0 ≤ θ1 ≤ 3, 0 ≤ θ2 ≤ 4, 0 ≤ θ3 ≤ 4} (2)

There is an obvious drawback to this over-approximation: It may add, in the
state class graph, states that should not be reachable. Moreover, the state
class graph can become infinite by doing this DBM over-approximation while
the exact state class graph is finite.

3 Necessary and sufficient condition for constraint re-
laxation

As we have seen before, the specificity of the state class graph of a TPN with
stopwatches is that some non-DBM polyhedral forms appear. A major issue

6



Magnin, Lime, Roux

is then to determine a priori when such polyhedral states appear in the state
class graph of the Scheduling-TPN we study. One condition for the relaxation
of constraints by the DBM-overapproximation in a class is following:

Proposition 3.1 The parent class includes both suspended and active transi-
tions which are continuously enabled before, during and after the firing of the
transition that led to the current class.

In [5], this condition is claimed to be necessary and sufficient. This con-
dition is indeed necessary, but it needs some additional constraints on the
timings of transitions in the firing domain for being relevant. This can be
illustrated by the net of figure 1. After firing t2, there is both a suspended
transition (t1) and an active one (t3), which are persistent after the firing of
t3. The firing of t3 leads to following class:

P1

γ = 1

ω = 1

P2

P3

γ = 1

ω = 2

P4

t1 [4, 5] t2 [1, 1]

t3 [1, 2]t4 [2, 4]

• •

•

Fig. 1. Counter-example

{ {P1, P3}, {3 ≤ θ1 ≤ 4, 0 ≤ θ3 ≤ 1} }

The firing domain of such a class can be ex-
pressed with a DBM. However, if the firing in-
terval associated to transition t2 is decreased to
[0; 1], then the firing sequence t2.t4 leads to:

{ {P1, P3}, {3 ≤ θ1, 0 ≤ θ3 ≤ 1, θ1 + θ3 ≤ 5} }

We made a non-DBM polyhedral form ap-
pear by only changing the firing interval of transition t2, that definitely shows
condition 3.1 is not sufficient to define the cases when the overapproximation
relaxes constraints.

Theorem 3.2 (Effective over-approximation) Let C = (M, D) be a Scheduling-
TPN state class such that D is a DBM (D = {αi ≤ θi ≤ βi, θi − θj ≤ γij}
is the canonical domain). Let tf be a firable transition from C : the firing
of tf leads to C ′ = (M ′, D′). Let D′ be the DBM-overapproximated domain
obtained from D′.

D′ relaxes constraints of D iff ∃i ∈ enabled(Act(M)), ∃j ∈ enabled(M) −
enabled(Act(M)), ∃k ∈ enabled(M) − disabled(M, tf ), s.t.. i �= k and βj +
γki > βk + γji ∨ αj − γik < αk − γij

The proof of this result is given in the appendices.

4 Improved algorithm for computing the exact state

space of a Scheduling-TPN

Practically, when studying Scheduling-TPNs, we observe the DBM over-approximation
often relaxes constraints. That means that the exact computation may be
needed in many cases when we want a sharper verification of the system. The

7



Magnin, Lime, Roux

major drawback of manipulating general polyhedra is the performance loss in
terms of computation speed and memory usage.

The main idea of our algorithm is that we do not always need to manip-
ulate polyhedra when these polyhedra can be stored as DBM. Each time we
can use DBM, we use them instead of general polyhedra. Moreover, we use
theorem 3.2 to determine a priori when the DBM computation is going to
relax constraints. If the necessary and sufficient condition is verified, then we
are sure that polyhedral computation is needed. Otherwise, we use the DBM
manipulations which are much faster. So, our algorithm mixes DBM manipu-
lation and polyhedral manipulation, in function of the data structure that has
to be manipulated. Some advantages of our method are further illustrated on
the simple example given in appendix B. The details about our algorithm are
also exposed in appendix C.

5 Experimental results

To illustrate the merits of our work, we introduce a benchmark that compares
the efficiency, in terms of computation speed, of the DBM over-approximation
proposed by Lime et al. in [12], the classical polyhedral computation and
our mixed algorithm. All three methods have indeed been implemented in
Romeo [9], an analysis tool for Time Petri Nets developed at IRCCyN. We
have executed the different algorithms on examples coming from real-time
systems. The main results are summarized in table 1: We give the number of
nodes and transitions of the resulting state class graph and the computation
duration on a PowerPC G4, 1.33 GHz, 1GB RAM.

NA (for Not Available) means that the computation could not yield a
result on the machine used. For the DBM over-approximation, NA means
that the over-approximate state space leads to an infinite number of marking
whereas the Scheduling-TPN is bounded.

For sure, when there are only a few classes which can be turned into a
DBM, our mixed method is less efficient and may be a little less fast than
the original polyhedral method (because of the test to check if the resulting
polyhedron can be written like a DBM). But for larger systems, we observe
a significative gain of time when computing the exact state class graph with
our mixed method. This is illustrated by examples 4, 5 or 6. Moreover, fully
polyhedral computation can sometimes lead to memory overflow while our
mixed method performs the computation without any difficulty (Examples 3
and 11).

A first conclusion is that for all systems of practical interest, our mixed
method is far more efficient than the general fully polyhedral method at com-
puting the exact state space of a Scheduling-TPN.

In general, the DBM over-approximation is, unsurprisingly, faster than the
exact computation. That is not any more the case when the number of states
added by the DBM over-approximation becomes important. This extreme case

8



Magnin, Lime, Roux

Scheduling-TPN Overapproximation Exact computation

Polyhedral algo Mixed algo

Time Nodes Transitions Time Nodes Transitions Time Nodes Transitions

Example 1 0.03 s 21 31 0.23 s 18 25 0.23 s 18 25

Example 2 0.03 s 5 4 0.19 s 5 4 0.19 s 5 4

Example 3 85.52 s 15178 49135 NA NA NA 85.59 s 15178 49135

Example 4 6.63 s 2260 5700 33.51 s 2260 5700 6.69 s 2260 5700

Example 5 18.88 s 11167 25856 80.9 s 11167 25856 19.08 s 11167 25856

Example 6 6.45 s 2225 5371 23.51 s 2225 5371 6.61 s 2225 5371

Example 7 0.03 s 8 10 0.18 s 8 10 0.18 s 8 10

Example 8 99.66 s 16323 54688 NA NA NA 99.73 s 16323 54688

Example 9 NA NA NA 0.19 s 19 24 0.19 s 19 24

Example 10 NA NA NA 26.92 s 4528 8699 13.24 s 4528 8699

Example 11 NA NA NA NA NA NA 115.11 s 16650 32865

Example 12 1.72 478 1137 NA NA NA NA NA NA

Table 1
Comparison between the DBM over-approximation algorithm, the classical

polyhedral algorithm and our mixed method (PowerPC G4; 1.33 GHz; 1GB
RAM)

appears on examples 9, 10 and 11: The states added by the approximation
lead to a infinite number of marking whereas the Scheduling-TPN is bounded.
However exact state-space computation on bounded Scheduling-TPNs does
not necessarily terminate (since the accessibility problem is undecidable [3])
and the DBM over-approximation can, in this case, make it possible to obtain
a finite (but approximate) abstraction of the state space as one can see on
example 12.

6 Conclusion

In this paper, we studied a criterion that allows us to know a priori if a
non-DBM polyhedral form will appear in the domain of a state class of a
TPN with stopwatches, when computing the successor of a state class. We
proved a necessary and sufficient condition in order to determine if the DBM
over-approximation relaxes constraints compared to the exact computation.
Starting from this condition, we proposed an efficient algorithm for computing
the exact state class graph of a Scheduling-TPN. Tests show that our algo-
rithm is for all systems of practical interest better (in terms of execution time
and memory) than the classical approach at computing the exact state-space.

In particular, it allows us to compute the state class graph of some Schedul-
ing-TPNs, for which the memory consumption of the fully polyhedral algo-
rithm is too high and for which the DBM over-approximation introduces an
infinite number of markings (and would anyway compute only an approximate
state-space).

It is very interesting to note that, while it allows us to check timed proper-
ties by itself (by the use of observers for instance), it may also act as a (slower

9



Magnin, Lime, Roux

but still efficient) replacement for the DBM over-approximation in the meth-
ods of [5] and [13], in the cases when the DBM over-approximation introduces
an infinite number of markings while the net is actually bounded and prevents
these methods to yield results.

Now, improvements can also be made on the over-approximation method.
The DBM over-approximation proposed by Lime et al. [12] is obviously
too coarse for some applications, and we thus need to refine it. Future
work also include the investigation of discrete semantics which provide under-
approximations but which transpose the problem of verification to finite state-
spaces.

References

[1] Avis, D., K. Fukuda and S. Picozzi, On canonical representations of convex
polyhedra, in: A. M. Cohen, X.-S. Gao and N. Takayama, editors, Mathematical
Software, Proceedings of the First International Congress of Mathematical
Software (2002), pp. 350–360.

[2] Berthomieu, B. and M. Diaz, Modeling and verification of time dependent
systems using time Petri nets, IEEE transactions on software engineering 17
(1991), pp. 259–273.

[3] Berthomieu, B., D. Lime, O. Roux and F. Vernadat, Reachability problems and
abstract state spaces for time Petri nets with stopwatches, Technical Report
04483, Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS), Toulouse,
France (2004).

[4] Berthomieu, B. and M. Menasche, An enumerative approach for analyzing time
Petri nets., IFIP Congress Series 9 (1983), pp. 41–46.

[5] Bucci, G., A. Fedeli, L. Sassoli and E. Vicario, Time state space analysis of real-
time preemptive systems, IEEE transactions on software engineering 30 (2004),
pp. 97–111.

[6] Cassez, F. and K. Larsen, The impressive power of stopwatches, in:
C. Palamidesi, editor, 11th International Conference on Concurrency Theory,
(CONCUR’2000), number 1877 in Lecture Notes in Computer Science (2000),
pp. 138–152.

[7] Dantzig, G., Linear programming and extensions, IEICE Transactions on
Information and Systems (1963).

[8] Dill, D., Timing assumptions and verification of finite-state concurrent systems,
, 407, 1989, pp. 197–212.

[9] Gardey, G., D. Lime, M. Magnin and O. H. Roux, Romeo: A tool for
analyzing time petri nets, in: 17th International Conference on Computer Aided
Verification (CAV) (2005).

10



Magnin, Lime, Roux

[10] Henzinger, T., P.-H. Ho and H. Wong-Toi, Hytech: A model checker for hybrid
systems, Journal of Software Tools for Technology Transfer 1 (1997), pp. 110–
122.

[11] Henzinger, T., P. Kopke, A. Puri and P. Varaiya, What’s decidable about hybrid
automata ?, Journal of Computer and System Sciences 57 (1998), pp. 94–124.

[12] Lime, D. and O. Roux, Expressiveness and analysis of scheduling extended time
Petri nets, in: 5th IFAC International Conference on Fieldbus Systems and their
Applications, (FET 2003) (2003).

[13] Lime, D. and O. Roux, A translation-based method for the timed analysis
of scheduling extended time Petri nets, in: 25th IEEE Real-Time Systems
Symposium (RTSS 2004) (2004), pp. 187–196.

[14] Roux, O. and D. Lime, Time Petri nets with inhibitor hyperarcs. Formal
semantics and state space computation, in: The 25th International Conference
on Application and Theory of Petri Nets, (ICATPN 2004), Lecture Notes in
Computer Science 3099 (2004), pp. 371–390.

[15] Roux, O. H. and A.-M. Déplanche, A t-time Petri net extension for real time-
task scheduling modeling, European Journal of Automation (JESA) 36 (2002).

A Proof of the necessary and sufficient condition 3.2

Let C ′ = (M ′, D′) be a state class of the Scheduling-TPN. Let C = (M, D) be
its parent class. For this demonstration, we consider a domain with 4 variables
but the proof can be easily extended to n variables. The enabled transitions
t1, t2 , t3 and t4 are associated to the variables θ1, θ2, θ3 and θ4. We assume
t1, t2 and t3 are active, and t4 is not. Finally, we assume that t1 is firable, that
the firing of t1 in class C leads to class C ′ and that t2 remains enabled in C ′.

The initial domain D, in its canonical form, can be written as follows:

D =




α1 ≤ θ1 ≤ β1, α2 ≤ θ2 ≤ β2,

α3 ≤ θ3 ≤ β3, α4 ≤ θ4 ≤ β4,

−γ21 ≤ θ1 − θ2 ≤ γ12, −γ31 ≤ θ1 − θ3 ≤ γ13,

−γ41 ≤ θ1 − θ4 ≤ γ14, −γ32 ≤ θ2 − θ3 ≤ γ23,

−γ42 ≤ θ2 − θ4 ≤ γ24, −γ43 ≤ θ3 − θ4 ≤ γ34

(A.1)

Now, we suppose that at least one of these four inequations is satisfied:

β2 + γ41 < β4 + γ21

α4 − γ12 < α2 − γ14

β2 + γ43 < β4 + γ23

α4 − γ32 < α2 − γ34

11



Magnin, Lime, Roux

Let us compute the domain D′ obtained from D by firing t1: we begin by
doing the variable substitution θi ← θ′i + θ1 for all active transitions, except
the disabled transition t1. We add the inequation ∀j, θ′j ≥ 0. Then we write
the new inequations in order to use Fourier-Motzkin method:




α1 ≤ θ1, θ1 ≤ β1,

α2 − θ′2 ≤ θ1, θ1 ≤ β2 − θ′2,

α3 − θ′3 ≤ θ1, θ1 ≤ β3 − θ′3,

−γ41 + θ4,≤ θ1 θ1 ≤ γ14 + θ4,

−γ42 + θ4 − θ′2 ≤ θ1, θ1 ≤ γ24 + θ4 − θ′2,

−γ43 + θ4 − θ′3 ≤ θ1, θ1 ≤ γ34 + θ4 − θ′3,

α4 ≤ θ′4 ≤ β4, θ′2 ≥ 0,

−γ32 ≤ θ′2 − θ′3 ≤ γ23, θ′3 ≥ 0,

−γ21 ≤ −θ′2 ≤ γ12,

−γ31 ≤ −θ′3 ≤ γ13

(A.2)

The Fourier-Motzkin method then consists in writing that the system has
solutions if and only if the lower bounds of θ1 are less or equal to the upper
bounds. Then, we can deduce from the previous domain the following list of
constraints: 



max{0,−γ12} ≤ θ′2 ≤ γ21,

max{0,−γ13} ≤ θ′3 ≤ γ31,

α4 ≤ θ4 ≤ β4,

−γ32 ≤ θ′2 − θ′3 ≤ γ23,

−γ42 − β1 ≤ θ′2 − θ4 ≤ γ24 − α1,

−γ43 − β1 ≤ θ′3 − θ4 ≤ γ34 − α1

α2 − γ14 ≤ θ′2 + θ4 ≤ β2 + γ41,

α3 − γ14 ≤ θ′3 + θ4 ≤ β3 + γ41,

α2 − γ34 ≤ θ′2 + θ4 − θ′3 ≤ β2 + γ43,

α3 − γ24 ≤ θ′3 + θ4 − θ′2 ≤ β3 + γ42

(A.3)

We can notice all non-DBM constraints of the four last lines use, at least,
one transition which was active in C (t2 or t3) and one transition which was
suspended (t4). It follows that the proof of previous necessary condition is
immediate: after firing t1, if class C ′ does not contain, at least, one transition
which was active in C and one transition which was inactive, there is no

12



Magnin, Lime, Roux

non-DBM polyhedral form in the firing domain of C ′.

Nevertheless, one should pay attention to the fact that the reciprocal is
false: Let us suppose, for instance, that γ24 = β2 − α4 and γ41 = β4 − α1 (i.e.
these constraints were redundant in D, which is the case when we start from
the initial class), then inequation θ′2 + θ4 ≤ β2 + γ41 can be obtained by com-
bining θ′2 ≤ γ21 and θ4 ≤ β4. It is then redundant and we can proceed the in
same way for the other constraints. In particular, this implies it is impossible
to obtain non-DBM polyhedral from when firing a transition starting from the
initial class.

We have now to prove that, among the four polyhedral constraints we got
previously, there is at least one which is not redundant with the constraints
on θ′2 + θ4 that we can deduce from the individual constraints on θ′2 and θ4

(inequations on θ′3 + θ4 are not interesting for us, as t3 may be disabled after
firing t1), that means:




α4 + max{0,−γ12} ≤ θ′2 + θ4 ≤ β4 + γ21,

α4 − γ32 ≤ θ′2 + θ4 − θ′3 ≤ β4 + γ23,
(A.4)

This verification is immediate, as we supposed at least one of following
inequations is satisfied:

β2 + γ41 < β4 + γ21

α4 − γ12 < α2 − γ14

β2 + γ43 < β4 + γ23

α4 − γ32 < α2 − γ34

So there appears, in the resulting domain, a non-DBM polyhedral form
which is not redundant with the other constraints. Consequently the DBM
over-approximation relaxes this constraint.

We have still to prove the reciprocal. In order to do that, let us try to prove
the contraposum. Then, suppose that the parent class does not include both
an active transition and a suspended transition so that these two transitions
remain enabled after the firing of tf (it is then immediate that the DBM over-
approximated domain is equal to the exact domain) or that none of the two
inequations on αk − γij et βk + γji is verified (this second case means that
the polyhedral constraint possibly resulting is redundant with the constraints
obtained separately on θi and θj , that means we do not have here a non-
DBM constraint). Then, the DBM over-approximation does not relax any
constraint. The claimed result is then proven.

13



Magnin, Lime, Roux

P1,γ = 1,ω = 1 P2

P3,γ = 1,ω = 2

P4

t1 [4, 5] t2 [0, 3]

t3 [1, 2]

t4 [2, 4]

• • •

Fig. B.1. Example where only one of the state class cannot be expressed with a
DBM

C0

C1 C2

C3 C4 C5

C6 C7

t2
t4

t3

t4

t4

t3

t2

t3

t1

t1




4 ≤ θ1 ≤ 5

0 ≤ θ2 ≤ 3

2 ≤ θ4 ≤ 4




1 ≤ θ1 ≤ 5

1 ≤ θ3 ≤ 2

0 ≤ θ4 ≤ 4

0 ≤ θ1 − θ4 ≤ 3




θ1 ≤ 3

0 ≤ θ2 ≤ 1

1 ≤ θ1 − θ2




θ1 ≤ 5

0 ≤ θ4 ≤ 3

1 ≤ θ1 − θ4




1 ≤ θ1

0 ≤ θ3 ≤ 2

θ1 + θ3 ≤ 5




1 ≤ θ1 ≤ 3

1 ≤ θ3 ≤ 2

{
1 ≤ θ1 ≤ 5

{
1 ≤ θ1 ≤ 3

{P1, P2, P4}

{P1, P3, P4} {P1, P2}

{P1, P4} {P1, P3} {P1, P3}

{P1} {P1}

Fig. B.2. State class graph of the Scheduling-TPN of figure B.1

14



Magnin, Lime, Roux

B Example that shows all the benefits of our mixed
algorithm

Let us consider the net of figure B.1. The number of nodes and transitions
are the same for both exact and DBM over-approximated computation (8
nodes and 10 transitions). That does not mean though that state class graph
obtained by the DBM over-approximation and by the polyhedral algorithm
are the same. The difference lies here in only one class. By doing the firing
sequence t2.t4, the resulting class C4 is as follows:

{ {P1, P3}, {0 ≤ θ1 ≤ 1, 0 ≤ θ3 ≤ 2, θ1 + θ3 ≤ 5} }

The DBM over-approximation leads to a similar class, except that the last
inequation does not appear in the associated domain. Even if this inequation
is taken into account or not, there is only one firable transition from this class:
t3. After firing t3, the DBM over-approximation and the exact computation
lead to the same class C6:

{ {P1}, {1 ≤ θ1 ≤ 5} }

For the next classes (which will be obtained by firing t1), it is not neces-
sary to manipulate general polyhedra (unless if the condition of theorem 3.2
is verified): DBM are sufficient. Consequently, we then store the resulting
domain as a DBM and make manipulations on this data structure.

C Improved algorithm for computing the state class

graph of a Scheduling-TPN

The core of our method relies in the algorithm for computing the successor of
a class:

15



Magnin, Lime, Roux

M’ = M −•tf + tf
•

If (the current domain D is encoded by a DBM AND condition 3.2 is NOT
satisfied) then

Make the DBM computation of [12] giving D′

else

Make the polyhedral computation, giving D′

end If
If (D′ can be encoded by a DBM) then

Encode D′ by a DBM

end If
return (M ′, D′)

Algorithm 1: Mixed method for computing the next class (entry parameter:
current class C = (M, D) and fired transition tf ; result: next class C ′ =
(M ′, D′))

The method for computing the list of firable transitions from a class C =
(M, D) is the same for classes in a DBM form and classes in a more general
polyhedral form. Checking if active transition ti is firable is performed as
follows: for all active transitions, tj , j �= i, we add constraints θi ≤ θj to the
current domain D and then check if the resulting domain is empty or not. If
not, that means that transition ti is firable from class C = (M, D). The only
difference is the nature of the domain we manipulate: Either a DBM, or a
more general polyhedron.

16


